博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Scalaz(14)- Monad:函数组合-Kleisli to Reader
阅读量:6534 次
发布时间:2019-06-24

本文共 11543 字,大约阅读时间需要 38 分钟。

  Monad Reader就是一种函数的组合。在scalaz里函数(function)本身就是Monad,自然也就是Functor和applicative。我们可以用Monadic方法进行函数组合:

import scalaz._import Scalaz._object decompose {//两个测试函数val f = (_: Int) + 3                              //> f  : Int => Int = 
val g = (_: Int) * 5 //> g : Int => Int =
//functorval h = f map g // f andThen g //> h : Int => Int =
val h1 = g map f // f compose g //> h1 : Int => Int =
h(2) //g(f(2)) //> res0: Int = 25h1(2) //f(g(2)) //> res1: Int = 13//applicativeval k = (f |@| g){_ + _} //> k : Int => Int =
k(10) // f(10)+g(10) //> res2: Int = 63//monadval m = g.flatMap{a => f.map(b => a+b)} //> m : Int => Int =
val n = for { a <- f b <- g} yield a + b //> n : Int => Int =
m(10) //> res3: Int = 63n(10) //> res4: Int = 63}

 以上的函数f,g必须满足一定的条件才能实现组合。这个从f(g(2))或g(f(2))可以看出:必需固定有一个输入参数及输入参数类型和函数结果类型必需一致,因为一个函数的输出成为另一个函数的输入。在FP里这样的函数组合就是Monadic Reader。 

但是FP里函数运算结果一般都是M[R]这样格式的,所以我们需要对f:A => M[B],g:B => M[C]这样的函数进行组合。这就是scalaz里的Kleisli了。Kleisli就是函数A=>M[B]的类封套,从Kleisli的类定义可以看出:scalaz/Kleisli.scala

1 final case class Kleisli[M[_], A, B](run: A => M[B]) { self =>2 ...3 trait KleisliFunctions {4   /**Construct a Kleisli from a Function1 */5   def kleisli[M[_], A, B](f: A => M[B]): Kleisli[M, A, B] = Kleisli(f)6 ...

Kleisli的目的是把Monadic函数组合起来或者更形象说连接起来。Kleisli提供的操作方法如>=>可以这样理解:

(A=>M[B]) >=> (B=>M[C]) >=> (C=>M[D]) 最终运算结果M[D]

可以看出Kleisli函数组合有着固定的模式:

1、函数必需是 A => M[B]这种模式;只有一个输入,结果是一个Monad M[_]

2、上一个函数输出M[B],他的运算值B就是下一个函数的输入。这就要求下一个函数的输入参数类型必需是B

3、M必须是个Monad;这个可以从Kleisli的操作函数实现中看出:scalaz/Kleisli.scala

/** alias for `andThen` */  def >=>[C](k: Kleisli[M, B, C])(implicit b: Bind[M]): Kleisli[M, A, C] =  kleisli((a: A) => b.bind(this(a))(k.run))  def andThen[C](k: Kleisli[M, B, C])(implicit b: Bind[M]): Kleisli[M, A, C] = this >=> k  def >==>[C](k: B => M[C])(implicit b: Bind[M]): Kleisli[M, A, C] = this >=> kleisli(k)  def andThenK[C](k: B => M[C])(implicit b: Bind[M]): Kleisli[M, A, C] = this >==> k  /** alias for `compose` */  def <=<[C](k: Kleisli[M, C, A])(implicit b: Bind[M]): Kleisli[M, C, B] = k >=> this  def compose[C](k: Kleisli[M, C, A])(implicit b: Bind[M]): Kleisli[M, C, B] = k >=> this  def <==<[C](k: C => M[A])(implicit b: Bind[M]): Kleisli[M, C, B] = kleisli(k) >=> this  def composeK[C](k: C => M[A])(implicit b: Bind[M]): Kleisli[M, C, B] = this <==< k

拿操作函数>=>(andThen)举例:implicit b: Bind[M]明确了M必须是个Monad。

kleisli((a: A) => b.bind(this(a))(k.run))的意思是先运算M[A],接着再运算k,以M[A]运算结果值a作为下一个函数k.run的输入参数。整个实现过程并不复杂。

实际上Reader就是Kleisli的一个特殊案例:在这里kleisli的M[]变成了Id[],因为Id[A]=A >>> A=>Id[B] = A=>B,就是我们上面提到的Reader,我们看看Reader在scalaz里是如何定义的:scalar/package.scala

type ReaderT[F[_], E, A] = Kleisli[F, E, A]  val ReaderT = Kleisli  type =?>[E, A] = Kleisli[Option, E, A]  type Reader[E, A] = ReaderT[Id, E, A]  type Writer[W, A] = WriterT[Id, W, A]  type Unwriter[W, A] = UnwriterT[Id, W, A]  object Reader {    def apply[E, A](f: E => A): Reader[E, A] = Kleisli[Id, E, A](f)  }  object Writer {    def apply[W, A](w: W, a: A): WriterT[Id, W, A] = WriterT[Id, W, A]((w, a))  }  object Unwriter {    def apply[U, A](u: U, a: A): UnwriterT[Id, U, A] = UnwriterT[Id, U, A]((u, a))  }

type ReaderT[F[_], E, A] = Kleisli[F, E, A] >>> type Reader[E,A] = ReaderT[Id,E,A]

好了,说了半天还是回到如何使用Kleisli进行函数组合的吧:

//Kleisli款式函数kf,kgval kf: Int => Option[String] = (i: Int) => Some((i + 3).shows)                                                  //> kf  : Int => Option[String] = 
val kg: String => Option[Boolean] = { case "3" => true.some; case _ => false.some } //> kg : String => Option[Boolean] =
//Kleisli函数组合操作import Kleisli._val kfg = kleisli(kf) >=> kleisli(kg) //> kfg : scalaz.Kleisli[Option,Int,Boolean] = Kleisli(
)kfg(1) //> res5: Option[Boolean] = Some(false)kfg(0) //> res6: Option[Boolean] = Some(true)

例子虽然很简单,但它说明了很多重点:上一个函数输入的运算值是下一个函数的输入值 Int=>String=>Boolean。输出Monad一致统一,都是Option。

那么,Kleisli到底用来干什么呢?它恰恰显示了FP函数组合的真正意义:把功能尽量细分化,通过各种方式的函数组合实现灵活的函数重复利用。也就是在FP领域里,我们用Kleisli来组合FP函数。

下面我们就用scalaz自带的例子scalaz.example里的KleisliUsage.scala来说明一下Kleisli的具体使用方法吧:

下面是一组地理信息结构:

1   // just some trivial data structure ,2   // Continents contain countries. Countries contain cities.3   case class Continent(name: String, countries: List[Country] = List.empty)4   case class Country(name: String, cities: List[City] = List.empty)5   case class City(name: String, isCapital: Boolean = false, inhabitants: Int = 20)

分别是:洲(Continent)、国家(Country)、城市(City)。它们之间的关系是层级的:Continent(Country(City))

下面是一组模拟数据:

val data: List[Continent] = List(    Continent("Europe"),    Continent("America",      List(        Country("USA",          List(            City("Washington"), City("New York"))))),    Continent("Asia",      List(        Country("India",          List(City("New Dehli"), City("Calcutta"))))))
从上面的模拟数据也可以看出Continent,Country,City之间的隶属关系。我们下面设计三个函数分别对Continent,Country,City进行查找:

def continents(name: String): List[Continent] =    data.filter(k => k.name.contains(name))       //> continents: (name: String)List[Exercises.kli.Continent]  //查找名字包含A的continent  continents("A")                                 //> res7: List[Exercises.kli.Continent] = List(Continent(America,List(Country(U                                                  //| SA,List(City(Washington,false,20), City(New York,false,20))))), Continent(A                                                  //| sia,List(Country(India,List(City(New Dehli,false,20), City(Calcutta,false,2                                                  //| 0))))))  //找到两个:List(America,Asia)  def countries(continent: Continent): List[Country] = continent.countries                                                  //> countries: (continent: Exercises.kli.Continent)List[Exercises.kli.Country]  //查找America下的国家  val america =      Continent("America",      List(        Country("USA",          List(            City("Washington"), City("New York")))))                                                  //> america  : Exercises.kli.Continent = Continent(America,List(Country(USA,Lis                                                  //| t(City(Washington,false,20), City(New York,false,20)))))  countries(america)                              //> res8: List[Exercises.kli.Country] = List(Country(USA,List(City(Washington,f                                                  //| alse,20), City(New York,false,20))))  def cities(country: Country): List[City] = country.cities                                                  //> cities: (country: Exercises.kli.Country)List[Exercises.kli.City]  val usa = Country("USA",            List(              City("Washington"), City("New York")))                                                  //> usa  : Exercises.kli.Country = Country(USA,List(City(Washington,false,20),                                                   //| City(New York,false,20)))  cities(usa)                                     //> res9: List[Exercises.kli.City] = List(City(Washington,false,20), City(New Y                                                  //| ork,false,20))

从continents,countries,cities这三个函数运算结果可以看出它们都可以独立运算。这三个函数的款式如下:

String => List[Continent]

Continent => List[Country]

Country => List[City]

无论函数款式或者类封套(List本来就是Monad)都适合Kleisli。我们可以用Kleisli把这三个局部函数用各种方法组合起来实现更广泛功能:

val allCountry = kleisli(continents) >==> countries                                                  //> allCountry  : scalaz.Kleisli[List,String,Exercises.kli.Country] = Kleisli(<                                                  //| function1>)  val allCity = kleisli(continents) >==> countries >==> cities                                                  //> allCity  : scalaz.Kleisli[List,String,Exercises.kli.City] = Kleisli(
) allCountry("Amer") //> res10: List[Exercises.kli.Country] = List(Country(USA,List(City(Washington, //| false,20), City(New York,false,20)))) allCity("Amer") //> res11: List[Exercises.kli.City] = List(City(Washington,false,20), City(New //| York,false,20))
还有个=<<符号挺有意思:

1   def =<<(a: M[A])(implicit m: Bind[M]): M[B] = m.bind(a)(run)
意思是用包嵌的函数flatMap一下输入参数M[A]:

1   allCity =<< List("Amer","Asia")                 //> res12: List[Exercises.kli.City] = List(City(Washington,false,20), City(New 2                                                   //| York,false,20), City(New Dehli,false,20), City(Calcutta,false,20))

那么如果我想避免使用List(),用Option[List]作为函数输出可以吗?Option是个Monad,第一步可以通过。下一步是把函数款式对齐了:

List[String] => Option[List[Continent]]

List[Continent] => Option[List[Country]]

List[Country] => Option[List[City]]

下面是这三个函数的升级版:

//查找Continent List[String] => Option[List[Continent]]  def maybeContinents(names: List[String]): Option[List[Continent]] =    names.flatMap(name => data.filter(k => k.name.contains(name))) match {       case h :: t => (h :: t).some       case _ => none    }                                             //> maybeContinents: (names: List[String])Option[List[Exercises.kli.Continent]]                                                  //|   //测试运行  maybeContinents(List("Amer","Asia"))            //> res13: Option[List[Exercises.kli.Continent]] = Some(List(Continent(America,                                                  //| List(Country(USA,List(City(Washington,false,20), City(New York,false,20))))                                                  //| ), Continent(Asia,List(Country(India,List(City(New Dehli,false,20), City(Ca                                                  //| lcutta,false,20)))))))  //查找Country  List[Continent] => Option[List[Country]]  def maybeCountries(continents: List[Continent]): Option[List[Country]] =    continents.flatMap(continent => continent.countries.map(c => c)) match {       case h :: t => (h :: t).some       case _ => none    }                                             //> maybeCountries: (continents: List[Exercises.kli.Continent])Option[List[Exer                                                  //| cises.kli.Country]]   //查找City  List[Country] => Option[List[Country]]  def maybeCities(countries: List[Country]): Option[List[City]] =    countries.flatMap(country => country.cities.map(c => c)) match {       case h :: t => (h :: t).some       case _ => none    }                                             //> maybeCities: (countries: List[Exercises.kli.Country])Option[List[Exercises.                                                  //| kli.City]]    val maybeAllCities = kleisli(maybeContinents) >==> maybeCountries >==> maybeCities                                                  //> maybeAllCities  : scalaz.Kleisli[Option,List[String],List[Exercises.kli.Cit                                                  //| y]] = Kleisli(
) maybeAllCities(List("Amer","Asia")) //> res14: Option[List[Exercises.kli.City]] = Some(List(City(Washington,false,2 //| 0), City(New York,false,20), City(New Dehli,false,20), City(Calcutta,false, //| 20)))
我们看到,只要Monad一致,函数输入输出类型匹配,就能用Kleisli来实现函数组合。

转载地址:http://uokdo.baihongyu.com/

你可能感兴趣的文章
java基础
查看>>
2017-5-8 TreeView 实现三级联动 (递归方法)
查看>>
Centos 7.5安装Grafana5.3结合Zabbix3.4实现可视化图形
查看>>
WeexSDK之注册Components
查看>>
模块化开发
查看>>
LeetCode--014--最长公共前缀
查看>>
使用UIKit制作卡牌游戏(二)ios游戏篇
查看>>
第二周
查看>>
Linux练习(write写入)
查看>>
matlab练习程序(随机游走图像)
查看>>
Linux命令行下运行java.class文件
查看>>
input文本框实现宽度自适应代码实例
查看>>
C#基本数据类型 <思维导图>
查看>>
POJ3321 Apple Tree (树状数组)
查看>>
一个程序员的自白(延迟满足)
查看>>
protocol buffers的编码原理
查看>>
行为型设计模式之命令模式(Command)
查看>>
减少死锁的几个常用方法
查看>>
HDFS 核心原理
查看>>
正确配置jstl的maven依赖,jar包冲突的问题终于解决啦
查看>>